Immuno-Oncology Combinations: Clinical Trial Design Consideration

Lillian L. Siu, MD Professor, Director of Phase I Program Co-Leader of Tumor Immunotherapy Program BMO Chair in Precision Genomics Princess Margaret Cancer Centre, Toronto, Canada

Disclosures (2017)

I have the following financial relationships to disclose:

- Consultant for: Merck (compensated), AstraZeneca/Medimmune (compensated), Symphogen (compensated), Morphosys (compensated)
- Speaker's Bureau for: None
- Grant/Research support from (Clinical Trials): Merck, Novartis, Bristol-Myers Squibb, Pfizer, Boerhinger-Ingelheim, GlaxoSmithKline, Roche, Karyopharm, AstraZeneca/Medimmune, Celgene, Genentech/Roche, Symphogen, Astellas
- Stockholder in: None

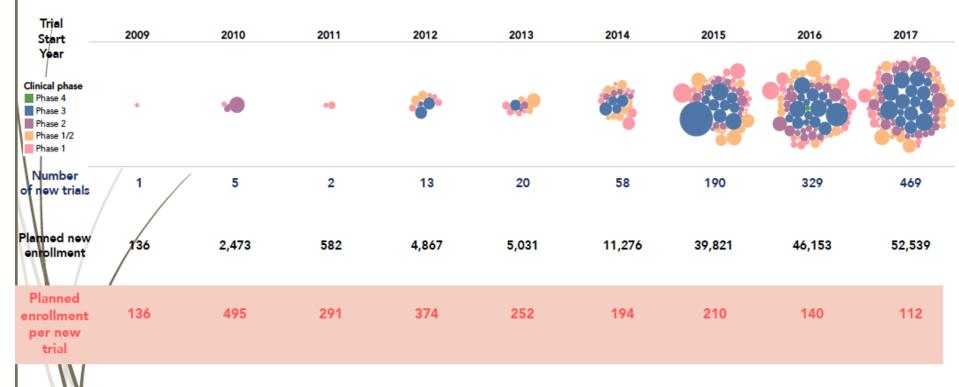
26 IMMUNO-ONCOLOGY AGENTS APPROVED GLOBALLY

.... MOSTLY DISCOVERED BY EXPERTS IN ACADEMIC CENTERS

Therapy type	Therapy name	Company	Target
	Ipilimumab	Bristol-Myers Squibb Co	CTLA-4
	Nivolumab	Bristol-Myers Squibb Co	PD-1
T-cell targeted	Pembrolizumab	Merck & Co Inc	PD-1
mmunomodulator (6 in total)	Atezolizumab	Roche/Genentech Ltd	PD-L1
	Avelumab	Merck KGaA	PD-L1
	Durvalumab	AstraZeneca/MedImmune LLC	PD-L1
Other immunomodulator (8 in total)	Aldesleukin	Novartis AG	IL2R
	Imiquimod	Valeant Pharmaceuticals Intl Inc	TLR7
	Interferon alfa	Sumitomo Dainippon Pharma Co Ltd	IFNAR1; IFNAR2
	Interferon alfa-1b	Shenzhen Kexing Biotech Co Ltd	IFNAR1
	Interferon alfa-2a	Cadila Healthcare Ltd	IFNAR1; IFNAR2
	Interferon alfa-2b	Merck & Co Inc	IFNAR1; IFNAR2
	Interferon beta	Toray Industries Inc	IFNAR1
	Interferon gamma-1a	Otsuka Pharmaceutical Co Ltd	IFNAR1

Therapy type	Name of Therapy	Company	Target
Cancer vaccine (7 in total)	BCG Live	Shire Plc	TLR
	ImmuCyst	Sanofi	TLR
	Immuno BCG	Ataulpho Paiva Foundation	TLR
	Mycidac-C	Cadila Pharmaceuticals Ltd	TLR2
	Sipuleucel-T	Dendreon	Unspecified TAA
	TICE BCG	Merck & Co Inc	TLR
	Uro-BCG	Medac Inc	TLR
Cell therapy	Tisagenlecleucel	Novartis AG	CD19
(2 in total)	Axicabtagene ciloleucel	Gilead	CD19
Oncolytic virus (2 in total)	Oncorine	Shanghai Sunway Biotech Co Ltd	CD40L
	Talimogene laherparepved	Amgen Inc	GMCSFR
CD3-targeted bispecific ab	Blinatumomab	Amgen Inc	CD19 X CD3

Tang, et al. Annals of Oncology 2017


A REVOLUTION IS UNDERWAY: 2,004 IO AGENTS IN DEVELOPMENT

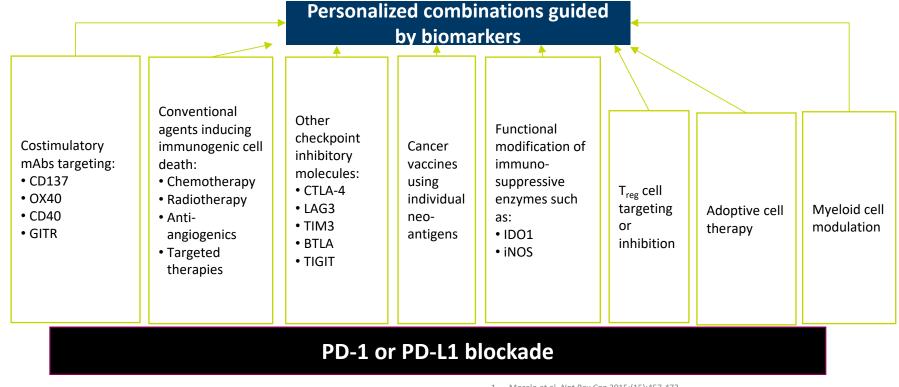
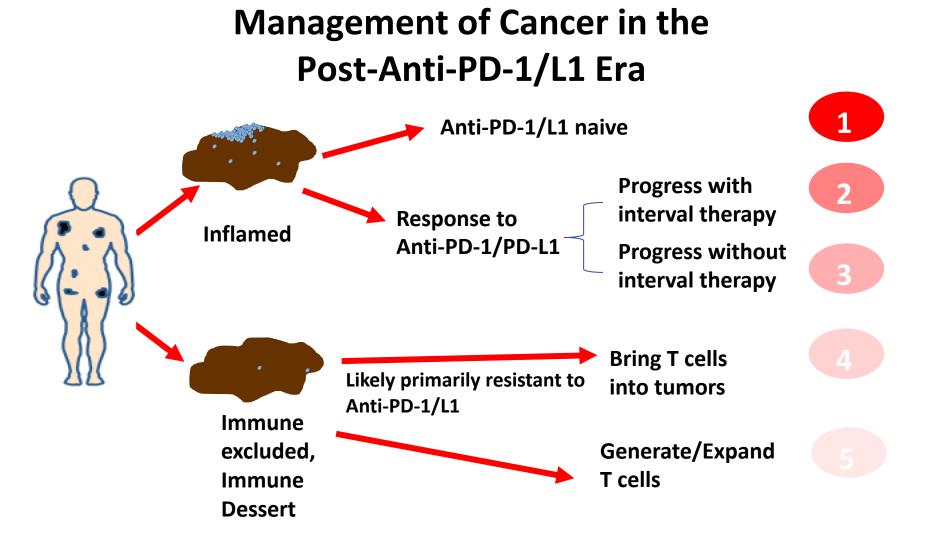
940 AGENTS ARE IN CLINICAL STAGES, AND 1,064 IN PRECLINICAL

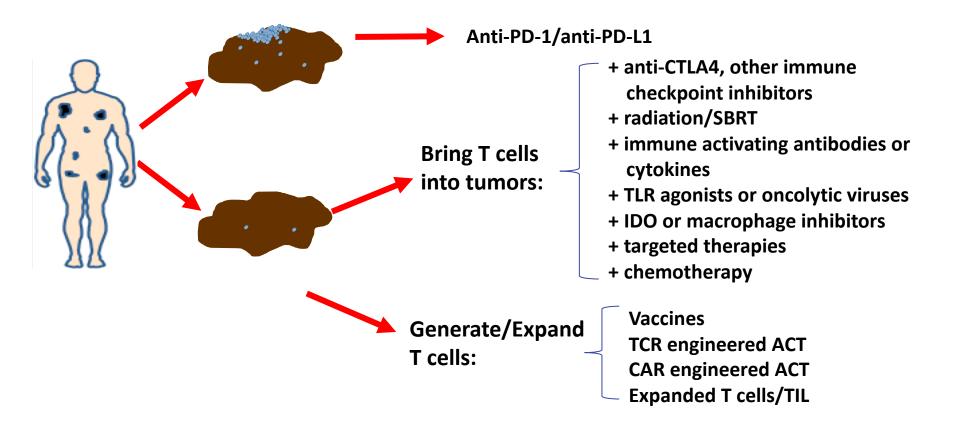
Tang, et al. Annals of Oncology 2017

INCREASE OF NEW PD-1/L1 COMBO TRIALS, BUT SMALLER STUDIES

Tang, et al. Annals of Oncology 2017

Immunotherapy can be Used in Combination with Other Therapeutic Agents


Figure adapted from Clin Cancer Res. Copyright 2012, vol 18 (2): pp336-341.

1. Morelo et al. Nat Rev Can 2015;(15):457-472 .

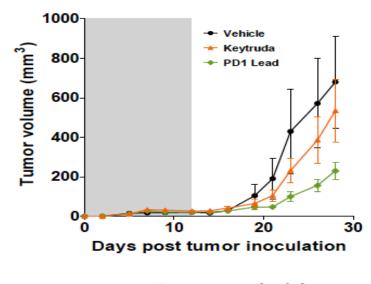
2. Drake CG. Ann Oncol 2012;23(suppl 8):viii41-viii46

Management of Cancer in the Post-Anti-PD-1/L1 Era

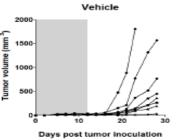
What are the Key Challenges with IO Combinations?

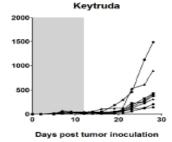
- What nonclinical data are sufficient to support rational IO combinations?
- How to make go-no-go decisions from early phase IO combination trials?
- How do we optimize efficiencies and reduce redundancies in performing IO combination trials?

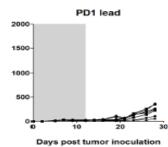
What are the Key Challenges with IO Combinations?

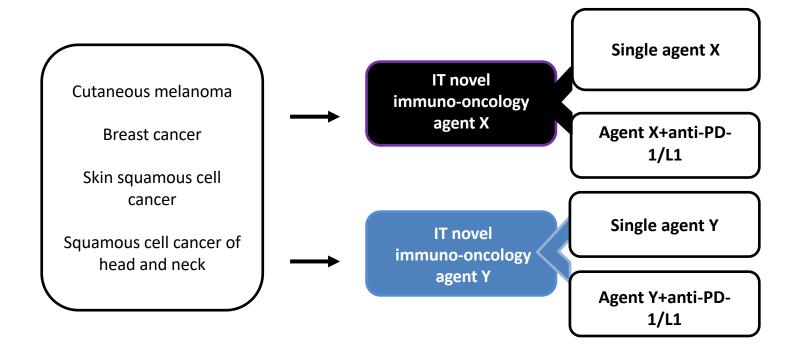

- What nonclinical data are sufficient to support rational IO combinations?
- How to make go-no-go decisions from early phase IO combination trials?
- How do we optimize efficiencies and reduce redundancies in performing IO combination trials?

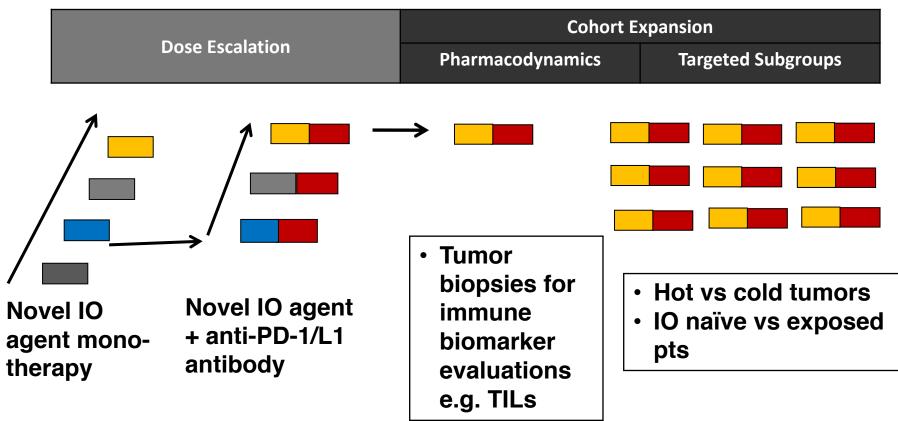
Presented IO Combinations in Clinical Trials: Basis for Combination – Limited Nonclinical Data

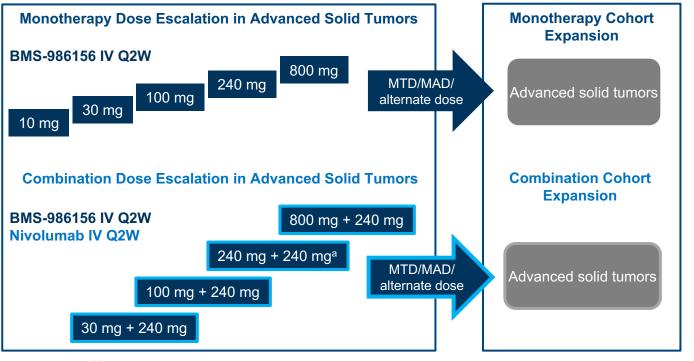

Phase	Agents	Targets	Basis for Combination	NCT
lb	PF-05082566 (utomilumab) pembrolizumab	4-1BB PD-1	B16F10 melanoma and MC38 colorectal cancer models	02179918
lb	MOXR0916 atezolizumab	OX40 PD-L1	MC38 colorectal model	02410512
1/11	BMS-986205 nivolumab	IDO PD-1	Not shown	02658890
1/11	Epacadostat various PD-1/PD-L1 inhibitors	IDO PD-1/PD-L1	B16.SIY melanoma model	multiple trials
1/11	Indoximod nivolumab	IDO PD-1/PD-L1	4T1 breast cancer model	01866319
1/11	BMS-986156 nivolumab	GITR PD-1	MC38 colorectal cancer	02598960


"Humanized" Mouse Models to Test IO Drugs


 Co-grafting human CD8+/CD4+ T cells with A375 (melanoma, MHC-II, PDL1+) s.c. in NOD/scid mice


Treatment schedule 10 mg/kg, 3x weekly, 6 doses


Phase 0 Evaluation of Novel IO Agents


What are the Key Challenges with IO Combinations?

- What nonclinical data are sufficient to support rational IO combinations?
- How to make go-no-go decisions from early phase IO combination trials?
- How do we optimize efficiencies and reduce redundancies in performing IO combination trials?

Common IO Phase I Study Design

Phase 1/2a Study of BMS-986156 ± Nivolumab in Patients With Advanced Solid Tumors (NCT02598960)

- Primary objectives
 Safety, tolerability, DLTs, and MTD, MAD, or alternate dose
- Secondary/exploratory objectives
 - Immunogenicity
 - PK
 - PD
 - Preliminary antitumor activity

Siu et al. ASCO 2017

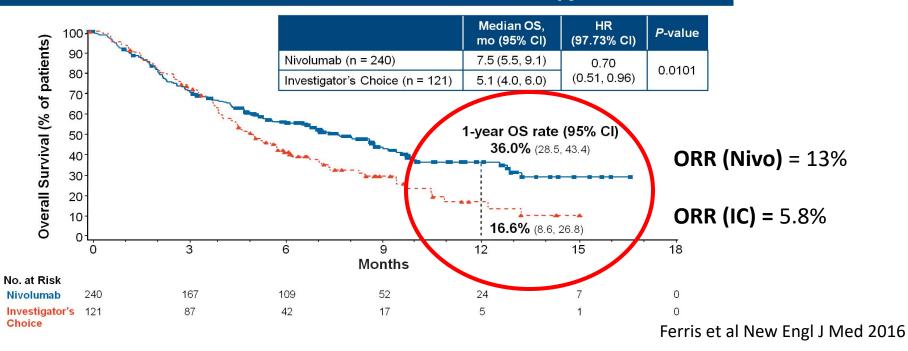
Data cutoff: March 31, 2017

^aDose currently being evaluated in the expansion phase.

DLT, dose-limiting toxicity; IV, intravenously; MAD, maximum administered dose; MTD, maximum tolerated dose; PD, pharmacodynamics; PK, pharmacokinetics; Q2W, every 2 weeks.

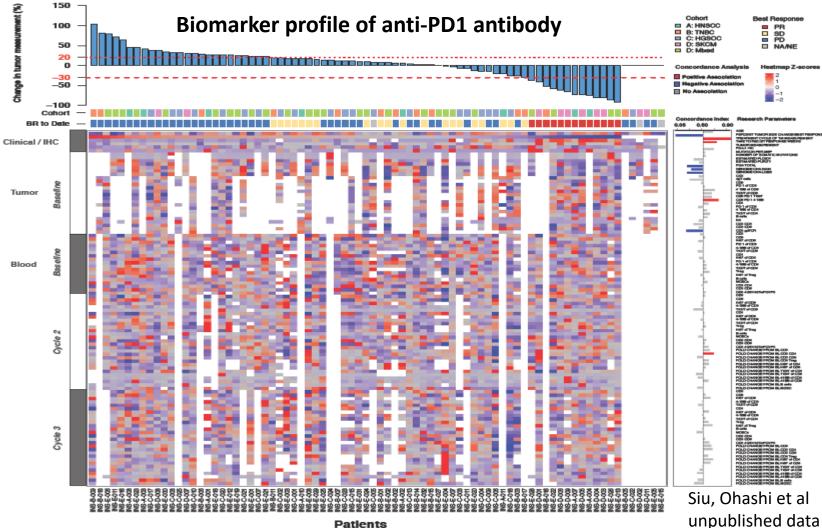
Pros and Cons of Seamless Phase I-II Trials

Pros:


- Efficiency, time-saving
- Compelling data can lead to accelerated regulatory approval
- Frequent investigator-sponsor communications are critical to ensure safety

Cons:

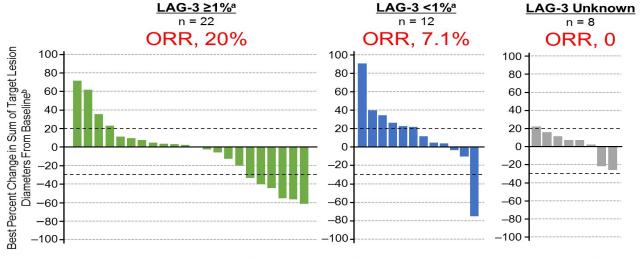
- Often huge studies with 100s-1000s of patients
- Increased complexity often with multiple amendments
- Objectives, endpoints and statistical analysis plans often lacking
- Diluted clinical experience due to large number of participating sites


Objective Response Rate is not Best Predictor of Clinical Benefit

Overall Survival Nivolumab in R/M SCCHN After Platinum Therapy

Challenges in Designing Rational IO Combinations

- Need to understand the effects different IO agents have on T cells, other immune cells and the tumor microenvironment to design rational combinations
- Beyond ORR, what are the best endpoints for go-no-go decisions? What thresholds define potential antitumor efficacy? The readouts are complicated by heterogeneous pt populations some of whom may be responding to anti-PD1/L1 antibody alone
- Optimal sequencing of IO agents in combination is also uncertain
- Biomarker-driven combination studies that are agnostic of histology (e.g. high TMB, POLE mutations, LAG3 overexpression, etc) are being developed



Patlents

LAG-3 Expression Enriches for Response

Melanoma Prior-IO Cohort

Abstract 9520

- LAG-3 expression enriched for responses in IO-experienced patients
- Nearly a 3-fold increase in ORR was observed in patients with LAG-3 ≥1% vs LAG-3 <1% (20% vs 7.1%)
- Overall response rate was 13%

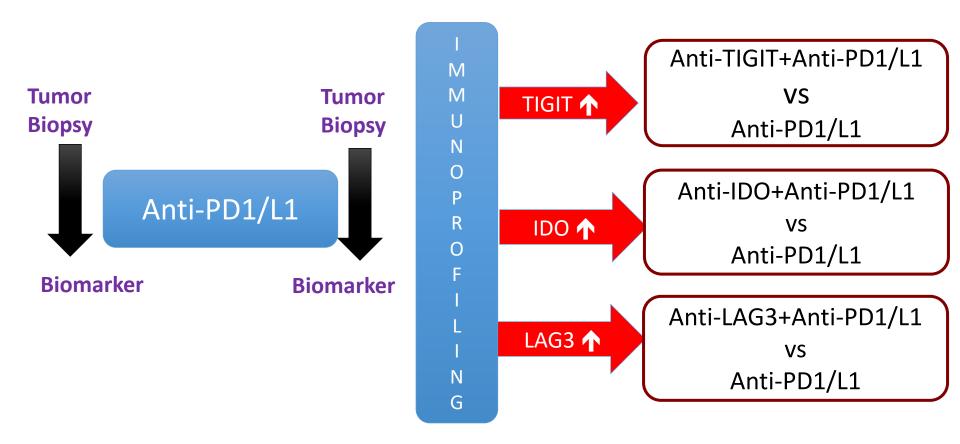
6 PRs: 2 prior PD; 3 prior PR; 1 unk

DCR, disease control rate; ORR, objective response rate.

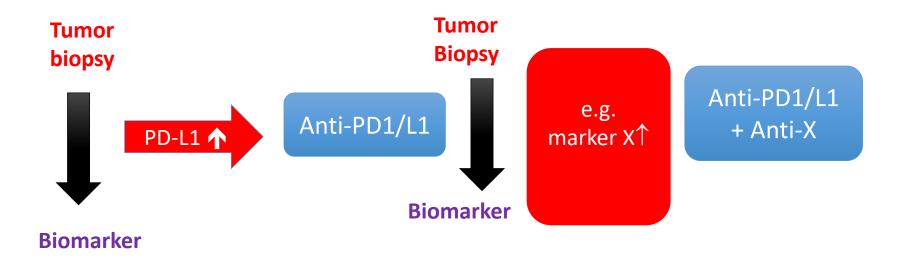
^aLAG-3 expression (percent of positive cells within invasive margin, tumor, and stroma) evaluated using immunohistochemistry (IHC) assays on formalin-fixed, paraffin-embedded tumor sections. Immune cell LAG-3 expression ($\geq1\%$ or <1\%) determined using mouse antibody clone 17B4. ^bResponse-evaluable patients (n = 48; all progressed on prior anti–PD-1/PD-L1 therapy). Six patients had clinical progression prior to their first scan and are not included in the plot. One patient with best change from baseline >30% had an unconfirmed best response of SD.

Predictive Biomarkers for IO Agents

- **PD-L1** Not a perfect predictive biomarker
- Microsatellite status/Mismatch repair proteins
- Genomics-based Tumor mutation burden, neoantigens, other genomic-based biomarkers, TCR sequencing, single cell sequencing
- Immunophenotyping Flow cytometry, CyTOF, multiplexed immunohistochemistry/ immunofluorescence
- Transcriptomic based RNAseq, Nanostring
- Imaging-based Radiomics, PET functional imaging
- Microbiome-based


What are the Key Challenges with IO Combinations?

- What nonclinical data are sufficient to support rational IO combinations?
- How to make go-no-go decisions from early phase IO combination trials?
- How do we optimize efficiencies and reduce redundancies in performing IO combination trials?


Question		MDICT 2018
MDICT	Strong hypothesis?	Yes, but preferably not the only data supporting
	Each agent active?	Preferred, if not, robust hypothesis and non clinical data
	Non clinical efficacy?	Preferred, but may not be directly relevant to human
	Combo toxicology	Has limitations
	Combo PK, PD	PD critical
	Explore sequence?	Yes, and in clinic
Trial design	Formal phase 1?	More important than ever to have formal phase I/ PD studies
	Escalation plan	
	Randomise?	Yes, for schedule and to evaluate efficacy
	PK in all?	If DDI possible
	PD in all	PD critical prior to go/no-go decisions
	Adaptive?	Novel designs critical to maximize knowledge
	Other	Clear objectives and Go/No-Go criteria
Other	Drugs	Best in class, do not retest failed combo unless justified
	Sharing	Critical

courtesy L Seymour on behalf of MDICT

Adaptive/Preemptive IO Basket Trial

Adaptive/Preemptive IO Dynamic Trial

• Can we individualize each patient's treatment dynamically?

Conclusions

- PD-1/PD-L1 inhibition is safe and broadly active; serves as the backbone of I/O combination therapy
- There are more rationale combinations than can be feasibly tested
 - Selection of patients and early demonstration of proof of concept
 - How to determine if there is additivity or synergy beyond just objective response rate
- Important to understand the effects of different IO agents on immune cells and TME
- Innovative trial designs and integration of validated predictive and resistance biomarkers are critical to inform the most effective way to deliver IO regimens